Abstract
Previously we found that passive transfer of monoclonal antibodies (MAbs) specific to either the vaccinia virus (VACV) L1R or A33R gene product protected mice from challenge with VACV. The L1R-specific MAbs, which bind the intracellular mature virion (IMV), neutralized virus in cell culture, whereas the A33R-specific MAbs, which bind extracellular enveloped virions (EEV), did not. To investigate whether a protective response could be generated by vaccination with these genes, we constructed and evaluated DNA vaccines expressing the VACV L1R and/or A33R genes under control of a cytomegalovirus promoter. Mice were vaccinated with DNA-coated gold beads by using a gene gun and then challenged with VACV (strain WR) intraperitoneally. Mice vaccinated with L1R alone developed neutralizing antibodies and were partially protected. Mice vaccinated with a combination of both genes loaded on the same gold beads developed a robust anti-A33R response; however, no neutralizing antibody response was detected, and the mice were not protected. In contrast, when mice were vaccinated with L1R and A33R loaded on different gold beads, neutralizing (presumably anti-L1R) and anti-A33R antibody responses were detected, and protection was markedly improved. Our results indicated that vaccination with both L1R and A33R proteins, intended to evoke mechanistically distinct and complementary forms of protection, was more effective than vaccination with either protein by itself.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.