Abstract

AbstractDNA vaccination and all-trans retinoic acid (ATRA) result in a survival advantage in a mouse model of acute promyelocytic leukemia (APL). Depletion of CD4+ or CD8+ cells abolished this effect. CD4+ depletions of long-term survivors resulted in relapse and death within 3 months, thus demonstrating the need of both CD4+ and CD8+ subsets for the generation of DNA-driven antileukemic immune responses and underscoring a crucial role of CD4+ cells in the maintenance of durable remissions. Degranulation and cytotoxic carboxyfluorescein diacetate succinimidyl ester–based assays showed major histocompatibility complex–restricted APL-specific T cell–mediated immune responses. Sorted APL-specific CD8+CD107a+ T cells showed an increase of antileukemic activity. Effectors from ATRA + DNA–treated mice were shown to secrete interferon-γ when stimulated with either APL cells or peptides from the promyelocytic leukemia-RARα vaccine-derived sequences as detected by ELISpot assays. Our results demonstrate that DNA vaccination with ATRA confers the effective boosting of interferon-γ–producing and cytotoxic T cells in the leukemic mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call