Abstract

The bacteriophage 434 repressor regulates gene expression by binding with differing affinities to the six operator sites on the phage chromosome. The symmetrically arrayed outer eight base pairs (four in each half-site) of these 14-base-pair operators are highly conserved but the middle four bases are divergent. Although these four base pairs are not in contact with repressor, operators with A.T or T.A base pairs at these positions bind repressor more strongly than those bearing C.G or G.C, suggesting that these bases are important for the repressor's ability to discriminate between operators. There is evidence that the central base pairs influence operator function by constraining the twisting and/or bending of DNA. Here we show that there is a relationship between the intrinsic twist of an operator, as determined by the sequence of its central bases, and its affinity for repressor; an operator with a lower affinity is undertwisted relative to an operator with higher affinity. In complex with repressor, the twist of both high- and low-affinity operators is the same. These results indicate that the intrinsic twist of DNA and its twisting flexibility both affect the affinity of 434 operator for repressor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.