Abstract

DNA topoisomerases are enzymes that control the topological state of DNA in all cells; they have central roles in DNA replication and transcription. They are classified into two types, I and II, depending on whether they catalyze reactions involving the breakage of one or both strands of DNA. Structural and mechanistic distinctions have led to further classifications: IA, IB, IC, IIA, and IIB. The essence of the topoisomerase reaction is the ability of the enzymes to stabilize transient breaks in DNA, via the formation of tyrosyl-phosphate covalent intermediates. The essential nature of topoisomerases and their ability to stabilize DNA breaks has led to them being key targets for antibacterial and anticancer agents. This chapter reviews the basic features of topoisomerases focussing mainly on the prokaryotic enzymes. We highlight recent structural advances that have given new insight into topoisomerase mechanisms and into the molecular basis of the action of topoisomerase-specific drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call