Abstract

Plasmid pBR322 DNA isolated from Salmonella typhimurium supX (topoisomerase I) mutants exhibits a novel supercoiling distribution characterized by extreme heterogeneity in linking number and the presence of highly negatively supercoiled topoisomers. The most negatively supercoiled topoisomers isolated from one supX mutant have more than twice the wild-type level of supercoiling; the distribution as a whole has a median superhelix density about 1.3 times that of wild type. Surprisingly, the supercoiling distribution of plasmid pUC9 DNA isolated from supX mutants differs from that of pBR322. Escherichia coli topoisomerase I mutants have been shown to acquire compensatory mutations that reduce bacterial chromosome supercoiling to below the wild-type level even in the absence of topoisomerase I. We find that such a compensatory mutation in an E. coli topoisomerase I deletion mutant does not reduce pBR322 DNA supercoiling to a level below that of wild type. Thus, the effects of topoisomerase mutations on supercoiling depend on the replicon. replicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.