Abstract

Membrane protein engineering exhibits great potential for cell functionalization. Although genetic strategies are sophisticated for membrane protein engineering, there still exist some issues, including transgene insertional mutagenesis, laborious, complicated procedures, and low tunability. Herein, we report a DNA-templated anchoring of exogenous proteins on living cell membranes to realize programmable functionalization of living cells. Using DNA as a scaffold, the model cell membranes are readily modified with proteins, on which the density and ratio of proteins as well as their interactions can be precisely controlled through predictable DNA hybridization. Then, the natural killer (NK) cells were engineered to gain the ability to eliminate the immune checkpoint signaling at the NK-tumor synapse, which remarkably promoted NK cell activation in immunotherapy. Given the versatile functions of exogenous proteins and flexible designs of programmable DNA, this method has the potential to facilitate membrane-protein-based cell engineering and therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.