Abstract
Two prokaryotic defence systems, prokaryotic Argonautes (pAgos) and CRISPR-Cas, detect and cleave invader nucleic acids using complementary guides and the nuclease activities of pAgo or Cas proteins. However, not all pAgos are active nucleases. A large clade of short pAgos bind nucleic acid guides but lack nuclease activity, suggesting a different mechanism of action. Here we investigate short pAgos associated with a putative effector nuclease, NbaAgo from Novosphingopyxis baekryungensis and CmeAgo from Cupriavidus metallidurans. We show that these pAgos form a heterodimeric complex with co-encoded effector nucleases (short prokaryotic Argonaute, DNase and RNase associated (SPARDA)). RNA-guided target DNA recognition unleashes the nuclease activity of SPARDA leading to indiscriminate collateral cleavage of DNA and RNA. Activation of SPARDA by plasmids or phages results in degradation of cellular DNA and cell death or dormancy, conferring target-specific population protection and expanding the range of known prokaryotic immune systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.