Abstract

In this work we have examined the role of DNA ligation in the in vitro replication catalyzed by CHO crude extracts on fork-like oligonucleotide substrates containing a unique d(GpG) intrastrand cross-link produced by the antitumor drug cisplatin. We show here that this reaction involves a ligation step, which necessitates excision of the flap strand of the forked substrate. By constructing substrates in which the unannealed tail could not be degraded by a 5' exonuclease, we obtained evidence suggesting that this type of activity participates in the removal of the flap strand. Furthermore, we found that the ligation event played a predominant role in the synthesis of fully replicated products from both intact and platinated templates. Finally, we investigated whether translesion synthesis of the cisplatin lesion could occur concomitantly to ligation by monitoring the incorporation of labeled precursors downstream of the adduct. Our results are compatible with the possibility that some translesion syntheses of the Pt-d(GpG) adduct by the extracts also contributed to the generation of full length molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call