Abstract

The base sequence of nucleic acid encodes structural and functional properties into the biopolymer. Structural information includes the formation of duplexes, G-quadruplexes, i-motif, and cooperatively stabilized assemblies. Functional information encoded in the base sequence involves the strand-displacement process, the recognition properties by aptamers, and the catalytic functions of DNAzymes. This Review addresses the implementation of the information encoded in nucleic acids to develop DNA switches. A DNA switch is a supramolecular nucleic acid assembly that undergoes cyclic, switchable, transitions between two distinct states in the presence of appropriate triggers and counter triggers, such as pH value, metal ions/ligands, photonic and electrical stimuli. Applications of switchable DNA systems to tailor switchable DNA hydrogels, for the controlled drug-release and for the activation of switchable enzyme cascades, are described, and future perspectives of the systems are addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.