Abstract

The base sequence of nucleic acid encodes structural and functional properties into the biopolymer. Structural information includes the formation of duplexes, G-quadruplexes, i-motif, and cooperatively stabilized assemblies. Functional information encoded in the base sequence involves the strand-displacement process, the recognition properties by aptamers, and the catalytic functions of DNAzymes. This Review addresses the implementation of the information encoded in nucleic acids to develop DNA switches. A DNA switch is a supramolecular nucleic acid assembly that undergoes cyclic, switchable, transitions between two distinct states in the presence of appropriate triggers and counter triggers, such as pH value, metal ions/ligands, photonic and electrical stimuli. Applications of switchable DNA systems to tailor switchable DNA hydrogels, for the controlled drug-release and for the activation of switchable enzyme cascades, are described, and future perspectives of the systems are addressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call