Abstract

The gene transcription of bacteria starts with a promoter sequence being recognized by a transcription factor found in the RNAP enzyme, this process is assisted through the conservation of nucleotides as well as other factors governing these intergenic regions. Faced with this, the coding of genetic information into physical aspects of the DNA such as enthalpy, stability, and base-pair stacking could suggest promoter activity as well as protrude differentiation of promoter and non-promoter data. In this work, a total of 3131 promoter sequences associated to six different sigma factors in the bacterium E. coli were converted into numeric attributes, a strong set of control sequences referring to a shuffled version of the original sequences as well as coding regions is provided. Then, the parameterized genetic information was normalized, exhaustively analyzed through statistical tests. The results suggest that strong signals in the promoter sequences match the binding site of transcription factor proteins, indicating that promoter activity is well represented by its conversion into physical attributes. Moreover, the features tested in this report conveyed significant variances between promoter and control data, enabling these features to be employed in bacterial promoter classification. The results produced here may aid in bacterial promoter recognition by providing a robust set of biological inferences.

Highlights

  • The transcription of DNA into messenger RNA is a crucial step in the cellular gene expression

  • The average enthalpy, free-stability, and base-pair stacking values for each nucleotide position within the promoter were compared in order to have their importance highlighted in correctly representing promoter activity

  • The coding of genetic information into structural and physical attributes has shown capable of well-representing promoter activity

Read more

Summary

Introduction

The transcription of DNA into messenger RNA (mRNA) is a crucial step in the cellular gene expression. This process is finely regulated by a plethora of proteins that recognize specific promoters and operators located in the intergenic regions, in response to environmental changes [3, 4, 16, 20]. Promoter sequences are DNA segments located upstream of the transcription start site (TSS) or + 1, where the enzyme RNA polymerase (RNAP) attaches to carry out gene transcription. In bacteria, this interaction is only possible when an additional protein, a sigma (σ) factor, interacts with the RNAP. The primary role of σ factors is to redirect the RNAP to specific promoters, granting specificity to promoter recognition [16].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call