Abstract

The capacity of non-illuminated nephrotoxin orellanine ([2,2′-bipyridine]-3,3′,4,4′-tetrol-1,1′-dioxide) to induce DNA damage in the presence of ferrous iron and dioxygen has been evaluated. Maximal single-strand breaks in plasmid DNA were obtained with a metal to ligand ratio 1:3. Instantaneous oxidation of Fe2+ in presence of orellanine under air was responsible for oxy-radical production concomitant to a stable ferric complex Fe(III)Or3 formation, leading to oxidative DNA breakage at physiological pH. DNA damage was lowered in the presence of SOD and catalase or DMSO, indicating a set of reactions that leads to oxyradical generation. Iron chelators such as DTPA and EDTA had no protecting effect, Desferal slightly protected. GSH acted as an oxy-radical scavenger, whereas cysteine induced stronger damage.Closely related bipyridine compounds were also studied in presence of Fe2+ and O2 using a combination of spin-trapping and DNA-nicking experiments, none of which were able to chelate iron and induce damage at pH 7. Both catecholic moieties and aminoxide groups are required for observing breakage at physiological pH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call