Abstract
There is increasing interest in the role of reactive oxygen radicals in the hepatotoxicity associated with ethanol consumption. Reactive oxygen intermediates interact with DNA and can cause single-strand breaks of supercoiled DNA. Experiments were carried out to evaluate the utility of this system as a sensitive assay for the detection of potent oxidants generated by rat liver microsomes isolated from pair-fed control rats and rats treated chronically with ethanol. DNA strand cleavage was assayed by monitoring the migration of the supercoiled and open circular forms in agarose. Microsomes catalysed DNA strand breakage with either NADPH or NADH as cofactors; iron was required to catalyse the reaction and various ferric complexes were effective in promoting the reaction. DNA strand cleavage was prevented by catalase, superoxide dismutase, GSH and hydroxyl-radical-scavenging agents, suggesting that a hydroxyl-radical-like species was the oxidant responsible for the breakage. This assay system proved to be much more sensitive in detecting hydroxyl radicals than are other methods, such as e.s.r. spectroscopy or oxidation of chemical scavenging agents with respect to the amount of microsomal protein and the nature and concentration of the iron catalyst required. Microsomes from ethanol-treated rats were more reactive than control microsomes in catalysing the DNA strand cleavage with either NADPH or NADH; increased catalytic activity was observed with various ferric complexes and was sensitive to the above antioxidants. Compared with preimmune IgG, anti-(cytochrome P4502E1) IgG had no effect on DNA strand cleavage by the control microsomes, but completely prevented the NADPH- and the NADH-dependent increased activity found with microsomes from the ethanol-treated rats. Inhibitors of cytochrome P4502E1, such as diethyl dithiocarbamate and tryptamine, also lowered the extent of increase of DNA strand cleavage produced by microsomes from the ethanol-treated rats. These results indicate that DNA strand cleavage is a very sensitive assay for detecting the production of hydroxyl radicals by microsomes and to demonstrate increased activity by microsomes after chronic ethanol treatment. This increased activity with NADPH and NADH is due, at least in part, to induction of cytochrome P4502E1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.