Abstract

The bis-dioxopiperazine ICRF-193 has long time been considered as a pure topoisomerase II catalytic inhibitor able to exert its inhibitory effect on the enzyme without stabilization of the so-called cleavable complex formed by DNA covalently bound to topoisomerase II. In recent years, however, this concept has been challenged, as a number of reports have shown that ICRF-193 really “poisons” the enzyme, most likely through a different mechanism from that shown by the classical topoisomerase II poisons used in cancer chemotherapy. In the present investigation, we have carried out a study of the capacity of ICRF-193 to induce DNA strand breaks, as classical poisons do, in cultured V79 and irs-2 Chinese hamster lung fibroblasts using the comet assay and pulsed-field gel electrophoresis (PFGE). Our results clearly show that ICRF-193 readily induces breakage in DNA through a mechanism as yet poorly understood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call