Abstract

In contrast to the well-documented negative effects of high-dose oxidant exposure, accumulating evidence supports a positive, perhaps essential physiologic role for very low-level oxidant stress. For example, low-level oxidant exposure, within or below the physiologic range, has been reported to stimulate membrane signal transduction, proliferation, antioxidant defense and DNA repair. In the present study, we have examined whether whole-body exposure to low-dose radiation (LDR) results in an alteration in constitutive (steady state) levels of DNA-strand breaks and whether an adaptive increase in DNA-repair response is induced. C57B1/6J mice were exposed to 0.04 Gy (4 cGy) of γ-radiation as a model of low level oxidant stress. End points measured after chronic in vivo LDR included: (1) constitutive expression of DNA-strand breaks in quiescent spleen cells; (2) sensitivity to DNA damage after high-dose radiation exposure in vitro; (3) repair of constitutive and radiation-induced DNA strand breaks after mitogen stimulation: (4) activity of the DNA-repair associated enzyme, poly(ADP-ribose)transferase (ADPRT) and its substrate, NAD. The results indicated that the constitutive expression of DNA-strand breaks is significantly decreased chronic LDR; however, DNA-repair capacity after high-dose radiation exposure is not increased above that observed in sham-irradiated mice. Associated with the reduction in consitutive DNA-strand break accumulation was a decrease in resting levels of the DNA-repair-associated enzyme poly(ADP-ribose) transferase (ADPRT). These results are consistent with the interpretation that cumulative DNA damage and associated DNA-repair activity in unstimulated cells are both reduced after chronic LDR exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.