Abstract

To investigate a potential mode of noninvasive screening for colorectal cancer, we evaluated the hypermethylation of the secreted frizzled-related protein-1 gene promoter in human stool DNA. In stool samples from 36 patients with colorectal neoplasia (7 adenoma, 29 colorectal cancer) and 17 healthy control subjects, isolated DNA was treated with sodium bisulfite and analyzed by methylation-specific polymerase chain reaction with primers specific for methylated or unmethylated promoter sequences of the secreted frizzled-related protein-1 gene. Hypermethylation of the secreted frizzled-related protein-1 promoter was present in the stool DNA of patients with adenoma and colorectal cancer. A sensitivity of 89 percent and specificity of 86 percent were achieved in the detection of colorectal neoplasia. The difference in hypermethylation status of the secreted frizzled-related protein-1 promoter between the patients with colorectal neoplasia and the control group was statistically highly significant (P < 0.001). Adenoma and early tumor Stage I (International Union Against Cancer) displayed both unmethylated and methylated secreted frizzled-related protein-1 promoter sequences, whereas advanced tumor stages showed only methylated secreted frizzled-related protein-1 (P = 0.05). The results indicate that this DNA stool test of hypermethylation of the secreted frizzled-related protein-1 promoter is a sensitive and specific method. It has the potential of a clinically useful test for the early detection of colorectal cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.