Abstract

DNA long-term stability and integrity is of importance for applications in DNA based bio-dosimetry, data-storage, pharmaceutical quality-control, donor insemination and DNA based functional nanomaterials. Standard protocols for these applications involve repeated freeze-thaw cycles of the DNA, which can cause detrimental damage to the nucleobases, as well as the sugar-phosphate backbone and therefore the whole molecule. Throughout the literature three hypotheses can be found about the underlying mechanisms occurring during freeze-thaw cycles. It is hypothesized that DNA single-strand breaks during freezing can be induced by mechanical stress leading to shearing of the DNA molecule, by acidic pH causing damage through depurination and beta elimination or by the presence of metal ions catalyzing oxidative damage via reactive oxygen species (ROS). Here we test these hypotheses under well defined conditions with plasmid DNA pUC19 in high-purity buffer (1xPBS) at physiological salt and pH 7.4 conditions, under pH 6 and in the presence of metal ions in combination with the radical scavengers DMSO and Ectoine. The results show for the 2686 bp long plasmid DNA, that neither mechanical stress, nor pH 6 lead to degradation during repeated freeze-thaw cycles. In contrast, the presence of metal ions (Fe2+ ) leads to degradation of DNA via the production of radical species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.