Abstract

DNA family shuffling is a powerful method of directed evolution applied for the generation of novel enzymes with the aim of improving their existing features or creating completely new enzyme properties. This method of evolution in vitro requires parental sequences containing a high level of sequence similarity, such as is found in family members of cytochrome P450 enzymes. Cytochromes P450 (P450s or CYPs) are capable of catalyzing a variety of chemical reactions and generating a wide range of products including dye production (e.g., pigments indigo and indirubin). Application of the method of DNA family shuffling described here has enabled us to create novel P450 enzymes and to further extend the capacity of P450 to oxidize indole, leading to pigment formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.