Abstract
The CRISPR/Cas9 genome editing technology has transformed basic and translational research in biology and medicine. However, the advances are hindered by off-target effects and a paucity in the knowledge of the mechanism of the Cas9 protein. Machine learning models have been proposed for the prediction of Cas9 activity at unintended sites, yet feature engineering plays a major role in the outcome of the predictors. This study evaluates the improvement in the performance of similar predictors upon inclusion of epigenetic and DNA shape feature groups in the conventionally used sequence-based Cas9 target and off-target datasets. The approach involved the utilization of neural networks trained on a diverse range of parameters, allowing us to systematically assess the performance increase for the meticulously designed datasets- (i) sequence only, (ii) sequence and epigenetic features, and (iii) sequence, epigenetic and DNA shape feature datasets.The addition of DNA shape information significantly improved predictive performance, evaluated by Akaike and Bayesian information criteria. The evaluation of individual feature importance by permutation and LIME-based methods also indicates that not only sequence features like mismatches and nucleotide composition, but also base pairing parameters like opening and stretch, that are indicative of distortion in the DNA-RNA hybrid in the presence of mismatches, influence model outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.