Abstract

In this paper we consider the efficiency of additional rounds of "continuous stacking" hybridization in DNA sequence reconstruction by hybridization with oligonucleotide matrix (SHOM). After the initial hybridization of target DNA with the matrix of oligonucleotides of fixed length L some additional hybridizations should be carried out in the presence of fluorescently labeled oligonucleotides of another length l. These additional oligonucleotides can hybridize in tandem with matrix tuples (continuous stacking hybridization) thus forming an extended duplex with the target DNA strand. The additional data obtained allows resolutions of branching points arising in the reconstruction procedure. Multiple rounds of continuous stacking hybridization considerably increase the efficiency of the sequencing method, eventually approaching the power of (L+l)-matrix. We develop here an algorithm that allows us to minimize the number of additional hybridization steps, by assembling sets of l-tuples to be added together in each round of continuous stacking hybridization. For SHOM using a matrix of octanucleotides, continuous stacking hybridization with pentanucleotides increases the length of unambiguously sequenced DNA from 200 to several thousands of base pairs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call