Abstract

RNA polymerase/promoter recognition represents a basic problem of molecular biology. Decades-long efforts were made in the area, and yet certain challenges persist. The usage of certain most suitable model subjects is pivotal for the research. System of T7 bacteriophage RNA-polymerase/T7 native promoter represents an exceptional example for the purpose. Moreover, it has been studied the most and successfully applied to aims of biotechnology and bioengineering. Both structural simplicity and high specificity of this molecular duo are the reason for this. Despite highly similar sequences of distinct T7 native promoters, the T7 RNA-polymerase enzyme is capable of binding respective promoter in a highly specific and adjustable manner. One explanation here is that the process relies primarily on DNA physical properties rather than nucleotide sequence. Here, we address the issue by analyzing massive data recently published by Komura and colleagues. This initial study employed Next Generation Sequencing (NGS) in order to quantify activity of promoter variants including ones with multiple substitutions. As a result of our work substantial bias in simultaneous occurrence of single-nucleotide sequence alterations was found: the highest rate of co-occurrence was evidenced within specificity loop of binding region while the lowest- in initiation region of promoter. If both location and a kind of nucleotides involved in replacement (both initial and resulting) are taken into consideration, one can easily note that N to A substitutions are most preferred ones across the whole 19 b.p.-long sequence. At the same time, N to C are tolerated only at crucial position in recognition loop of binding region, and N to G are uniformly least tolerable. Later in this work the complete set of variants was split into groups with mutations (1) exclusively in binding region; (2) exclusively in melting region; (3) in both regions. Among these three groups second comprises extremely few variants (at triple-digit rate lesser than in two other groups, 46 versus over one and six thousand). Yet these are all promoter with substantial to high activity. This group two appeared heterogenous by primary sequence; indeed, upon further subdivision into above versus below average activity subgroups first one was found to comprise promoters with negligible conservation at 2 position of melting region; the second was hardly conserved in this region at all. This draws our attention to perfect consensus sequence of class III T7 promoter with 2 nucleotide randomized (all four are present by one to several copies in the previously published source dataset), the picture becomes even more pronounced. We therefore suggest that mutations at the position therefore do not cause significant changes in terms of promoter activity. At the same time, such modifications dramatically change DNA physical properties which were calculated in our study (namely electrostatic potential and propensity to bend). One possible suggestion here is that 2 nucleotide might function as a generic switch; if so, substitution 2A to 2T has important regulatory consequences. The fact that that 2 b.p. is the most evidently different nucleotide between class II versus class III promoters of T7 genome and that it also distinguishes the class III promoter in T7 genome versus promoters of its relative but reproductively isolated bacteriophage T3. In other words, it appears feasible that mutation at 2 nucleotide does not impede promoter activity yet alter its physical properties thus affecting differential RNA polymerase/promoter interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call