Abstract

Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism carried out by low-fidelity DNA polymerases that bypass DNA lesions, which overcomes replication stalling. Despite the miscoding nature of most common DNA lesions, several of them are bypassed in mammalian cells in a relatively accurate manner, which plays a key role maintaining a low mutation load. Whereas it is generally agreed that TLS across the major UV and sunlight induced DNA lesion, the cyclobutane pyrimidine dimer (CPD), is accurate, there were conflicting reports on whether the same is true for the thymine–thymine pyrimidine–pyrimidone(6-4) ultraviolet light photoproduct (TT6-4PP), which represents the second most common class of UV lesions. Using a TLS assay system based on gapped plasmids carrying site-specific TT6-4PP lesions in defined sequence contexts we show that the DNA sequence context markedly affected both the extent and accuracy of TLS. The sequence exhibiting higher TLS exhibited also higher error-frequency, caused primarily by semi-targeted mutations, at the nearest nucleotides flanking the lesion. Our results resolve the discrepancy reported on TLS across TT6-4PP, and suggest that TLS is more accurate in human cells than in mouse cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.