Abstract

This paper describes our recent efforts on the self-assembly of three-dimensional (3D) DNA nanostructures from DNA star motifs (tiles). DNA star motifs are a family of DNA nanostructures with 3, 4, 5, or 6 branches; they are named as 3-, 4-, 5-, 6-point-star motifs, respectively. Such motifs are programmed to further assemble into nanocages (regular polyhedra or irregular nanocapsules) with diameters ranging from 20 nm to 2 microm. Among them, DNA nanocages derived from 3-point-star motif consists of a group of regular polyhedra: tetrahedra, hexahedra (or cubes), dodecahedra and buckyballs (containing 4, 8, 20, and 60 units of the 3-point-star motif, respectively). An icosahedron consists of twelve 5-point-star motifs and is similar to the shapes of spherical viruses. 6-point-star motifs can not assemble into regular polyhedra; instead, some sphere-like or irregular cages with diameters about 1-2 microm will form. Similar large cages can also assemble from the 5-point-star motif when the DNA concentrations are higher than those for assembling regular icosahedra. In our study, we have identified several important factors for assembly of well-defined 3D nanostructures, including the concentration, the flexibility, and the arm length of the DNA tiles and the association strength between the DNA tiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call