Abstract

The binding of four phenanthridine-guanidine peptides to DNA/RNA was evaluated via spectrophotometric/microcalorimetric methods and computations. The minor structural modifications-the type of the guanidine group (pyrrole guanidine (GCP) and arginine) and the linker length (presence or absence of glycine)-greatly affected the conformation of compounds and consequently the binding to double- (ds-) and single-stranded (ss-) polynucleotides. GCP peptide with shorter linker was able to distinguish between RNA (A-helix) and DNA (B-helix) by different circular dichroism response at 295 nm and thus can be used as a chiral probe. Opposed to the dominant stretched conformation of GCP peptide with shorter linker, the more flexible and longer linker of its analogue enabled the molecule to adopt the intramolecularly stacked form which resulted in weaker yet selective binding to DNA. Beside efficient organization of ss-polynucleotide structures, GCP peptide with shorter linker bound stronger to ss-DNA/RNA compared to arginine peptides which emphasize the importance of GCP unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.