Abstract

Poly (ADP-ribosyl)ation has central functions in maintaining genome stability, including facilitating DNA replication and repair. In cancer cells these processes are frequently disrupted, and thus interfering with poly (ADP-ribosyl)ation can exacerbate inherent genome instability and induce selective cytotoxicity. Indeed, inhibitors of poly (ADP-ribose) polymerase (PARP) are having a major clinical impact in treating women with BRCA-mutant ovarian cancer, based on a defect in homologous recombination. However, only around half of ovarian cancers harbour defects in homologous recombination, and most sensitive tumours eventually acquire PARP inhibitor resistance with treatment. Thus, there is a pressing need to develop alternative treatment strategies to target tumours with both inherent and acquired resistance to PARP inhibition. Several novel inhibitors of poly (ADP-ribose)glycohydrolase (PARG) have been described, with promising anti-cancer activity in vitro that is distinct from PARP inhibitors. Here we discuss, the role of poly (ADP-ribosyl)ation in genome stability, and the potential for PARG inhibitors as a complementary strategy to PARP inhibitors in the treatment of ovarian cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.