Abstract

Exposure of mammalian cells to short-wavelength light (UVC) triggers a global response which can either counteract the deleterious effect of DNA damage by enabling DNA repair or lead to apoptosis. Several stress-activated protein kinases participate in this response, making phosphorylation a strong candidate for being involved in regulating the cellular damage response. One factor that is phosphorylated in a UVC-dependent manner is the 32-kDa subunit of the single-stranded DNA-binding replication protein A (RPA32). RPA is required for major cellular processes like DNA replication, and removal of DNA damage by nucleotide excision repair (NER). In this study we examined the signal which triggers RPA32 hyperphosphorylation following UVC irradiation in human cells. Hyperphosphorylation of RPA was observed in cells from patients with either NER or transcription-coupled repair (TCR) deficiency (A, C, and G complementation groups of xeroderma pigmentosum and A and B groups of Cockayne syndrome, respectively). This exclude both NER intermediates and TCR as essential signals for RPA hyperphosphorylation. However, we have observed that UV-sensitive cells deficient in NER and TCR require lower doses of UV irradiation to induce RPA32 hyperphosphorylation than normal cells, indicating that persistent unrepaired lesions contribute to RPA phosphorylation. Finally, the results of UVC irradiation experiments on nonreplicating cells and S-phase-synchronized cells emphasize a major role for DNA replication arrest in the presence of UVC lesions in RPA UVC-induced hyperphosphorylation in mammalian cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.