Abstract

The impact of DNA damage-induced replication blockage for early activation of stress kinases [stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)] is largely unknown. Here, we show that induction of dual phosphorylation of SAPK/JNK by the DNA polymerase inhibitor aphidicolin was not ameliorated by additional exposure to ultraviolet (UV) light, indicating that overlapping mechanisms participate in signaling to SAPK/JNK triggered by both agents. UV-induced DNA replication blockage, cyclobutane pyrimidine dimer formation and DNA strand break induction coincided with SAPK/JNK phosphorylation at early (≤30 min) but not late (≥2 h) time points after exposure. Genotoxin-stimulated SAPK/JNK activation was attenuated in nonproliferating cells, indicating that S phase-dependent mechanisms are involved in signaling to SAPK/JNK. Correspondingly, UV-induced phosphorylation of SAPK/JNK was higher in S-phase cells as compared with G1-phase cells. Activation of SAPK/JNK by genotoxins was below detection limit in nonproliferating human peripheral blood lymphocytes, whereas peripheral blood lymphocytes stimulated to proliferation displayed clear SAPK/JNK activation. UV-induced phosphorylation of SAPK/JNK was attenuated in XPC-defective cells, ameliorated in BRCA2 mutated cells and not changed in cells lacking ATM, DNA-PK, CSB, XPA, p53, ERCC1 or PARP as compared with the corresponding wild types. Based on these data, we suggest that DNA replication blockage caused by genotoxin-induced DNA damage contributes to early activation of SAPK/JNK.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call