Abstract

When the aya1+ gene is mutated, Schizosaccharomyces pombe cells become unable to react appropriately to a delay in DNA replication. Instead of stalling the cell cycle to allow completion of DNA synthesis, they proceed unperturbed towards mitosis and attempt to segregate the still unreplicated chromosomes. As a result, the genetic material segregates unevenly and the nuclei assume a mitotic catastrophe phenotype, characterized by torn chromosomes (cut), anucleated cells and scattered chromosomes. Interestingly, the aya1 phenotype can be suppressed by overexpression of either the catalytic subunit of S. pombe DNA polymerase alpha or of a novel protein called hur1 +p. The latter bears significant homology to the core of the human Rab escort protein, which belongs to a family of factors necessary to the post-translational isoprenylation of proteins like Ras, Rab and lamin B. When isoprenylation is chemically inhibited with R-limonene (a monoterpene derived from orange rind), wild type S. pombe cells become insensitive to an S phase delay, in a manner strongly reminiscent of aya1 mutants. Moreover, overexpression of hur1 +p in wild type cells rescues the failing checkpoint function. We propose that there is a strong correlation between the aya1 phenotype, S-M phase checkpoint function, and isoprenylation events in fission yeast.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.