Abstract

Patients with end-stage renal disease (ESRD) display enhanced genomic damage. DNA repair gene polymorphisms may affect DNA repair capacity and modulate susceptibility to ESRD. In this study, we aimed to determine the frequency of polymorphisms in two DNA repair enzyme genes, Xeroderma pigmentosum complementation group D (XPD) and X-ray cross-complementing group 1 (XRCC1), in patients with ESRD and to evaluate their association with ESRD development. By using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP), we genotyped four single nucleotide polymorphisms (SNPs) in XPD codons 312 and 751 and XRCC1 codons 194 and 399 in 136 dialysis patients (71 patients undergoing hemodialysis and 65 subjected to peritoneal dialysis) and 147 healthy controls. Patients having XRCC1 399 Arg/Gln (OR:1.98; 95% CI: 1.21-3.25, P = 0.007) or XRCC1-399 Gln/Gln (OR: 3.95; 95% CI: 1.45-10.76, P = 0.005) genotype had a significantly higher risk of ESRD than those with XRCC1 399 Arg/Arg genotype. We also found a significantly higher frequency of the XRCC1 399Gln allele in patients with ESRD than in controls, with OR = 2.03 (95% CI = 1.08-3.81, P = 0.03). We further investigated the potential combined effect of these DNA repair variants on the risk of ESRD development. It was found that combination of the Arg/Gln or Gln/Gln genotypes of XRCC1 Arg399Gln polymorphism with the two possible genotypes of XPD-Asp312Asn or with the Lys/Gln or Gln/Gln genotypes of XPD Lys751Gln was significantly associated with the development of ESRD. This is the first report showing an association between DNA repair gene polymorphisms and ESRD development, and suggests that XRCC1 Arg399Gln polymorphism may confer increased risk for the development of the disease. Further larger studies should be conducted to confirm these results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call