Abstract

Using an assay that measures the removal of UV-induced pyrimidine dimers in specific DNA sequences, we have found that the Pvt-1, immunoglobulin H-C alpha (IgH-C alpha), and IgL-kappa loci are poorly repaired in normal B lymphoblasts from plasmacytoma-susceptible BALB/cAnPt mice. Breaksites in these genes are associated with the chromosomal translocations that are found in > 95% of BALB/cAnPt plasmacytomas. In contrast to those from BALB/cAnPt mice, B lymphoblasts from plasmacytoma-resistant DBA/2N mice rapidly repair Pvt-1, IgH-C alpha, and IgL-kappa. Further, (BALB/cAnPt x DBA/2N)F1 hybrids, which are resistant to plasmacytoma development, carry an efficient (DBA/2N-like) repair phenotype. Analysis of allele-specific repair in the IgH-C alpha locus indicates that efficient repair is controlled by dominant, trans-acting factors. In the F1 heterozygotes, these factors promote efficient repair of BALB/cAnPt IgH-C alpha gene sequences. The same sequences are poorly repaired in the BALB/cAnPt parental strain. Analysis of the strand specificity of repair indicates that both strand-selective and nonselective forms of repair determine repair efficiency at the gene level in nonimmortalized murine B lymphoblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.