Abstract
PurposeThe addition of PARP inhibitors to chemotherapy has been assessed in > 80 clinical trials across multiple malignancies, on the premise that PARP inhibitors will increase chemotherapy effectiveness regardless of whether cancers have underlying disruption of DNA repair pathways. Consequently, the majority of combination therapy trials have been performed on patients without biomarker selection, despite the use of homologous recombination deficiency to dictate use of PARP inhibitors in the maintenance setting. An unresolved question is whether biomarkers are needed to identify patients who respond to combination PARP inhibitors and chemotherapy. MethodsA systematic literature review identified studies using PARP inhibitors in combination with chemotherapy versus chemotherapy alone, where the study included a biomarker of DNA repair function (BRCA1, BRCA2, homologous recombination deficiency test, ATM, ERCC1, SLFN11). Hazard ratios (HR) were pooled in a meta-analysis using generic inverse-variance, and fixed or random effects modelling. Subgroup analyses were conducted on biomarker selection and type of malignancy. ResultsNine studies comprising 2547 patients met the inclusion criteria. Progression-free survival (PFS) was significantly better in patients with a DNA repair biomarker (HR: 0.57, 95% CI: 0.48–0.68, p < 0.00001), but there was no benefit in patients who lacked a biomarker (HR: 0.94, 95% CI: 0.82–1.08, p = 0.38). Subgroup analysis showed that BRCA status and SLFN11 biomarkers could predict benefit, and biomarker-driven benefit occurred in ovarian, breast and small cell lung cancers. The addition of PARP inhibitors to chemotherapy was associated with increased grade 3/4 side effects, and particularly neutropenia. ConclusionsCombination therapy only improves PFS in patients with identifiable DNA repair biomarkers. This indicates that PARP inhibitors do not sensitise patients to chemotherapy treatment, except where their cancer has a homologous recombination defect, or an alternative biomarker of altered DNA repair. While effective in patients with DNA repair biomarkers, there is a risk of high-grade haematological side-effects with the use of combination therapy. Thus, the benefit in PFS from combination therapy must be weighed against potential adverse effects, as individual arms of treatment can also confer benefit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.