Abstract

Folate antagonists, such as aminopterin, methotrexate and various sulfonamides, block de novo thymidylate biosynthesis in Saccharomyces cerevisiae. The resulting starvation for thymine nucleotides is lethal and recombinagenic in RAD wild-type strains. In this paper we report our studies of these effects in repair-deficient yeast. Antifolate treatment of various rad mutants revealed that repair defects influence the killing and recombination caused by thymidylate deprivation. Compared to a RAD wild-type strain, diploids homozygous for rad3, rad6 or rad18 were more resistant to cell killing. Thus, contrary to findings with conventional DNA-damaging agents, the lethal effects of thymidylate starvation appear to be ameliorated by certain DNA repair deficiencies. On the other hand, a rad50 strain was extremely sensitive to the antifolates. Within this series of diploids, increasing sensitivity to thymidylate starvation was accompanied by an increase in recombination frequencies. The degrees of lethality and recombination, induced by thymidylate depletion, were correlated with the severity of DNA-strand breakage in the RAD and rad50 strains. Experiments with diploids homozygous for rad52, rad54 or rad57 suggested that aborted recombination events, provoked by thymidylate deprivation, caused chromosome loss. Furthermore, the repair defects in these mutants indicated that double-strand breaks are among the lethal lesions induced by thymine nucleotide starvation. Finally, we discuss the possibility that the recombinagenicity of thymidylate stress may account for one type of acquired resistance to methotrexate in mammalian cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call