Abstract

The ability to manipulate the bacterial genome is an obligatory premise for the study of gene function and regulation in bacterial cells. The λ red recombineering technique allows modification of chromosomal sequences with base-pair precision without the need of intermediate molecular cloning steps. Initially conceived to construct insertion mutants, the technique lends itself to a wide variety of applications including the creation of point mutants, seamless deletions, reporter, and epitope tag fusions and chromosomal rearrangements. Here, we introduce some of the most common implementations of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call