Abstract
Overexpression of DNA polymerase beta (polbeta), an error-prone DNA repair enzyme, has been shown to result in mutagenesis, aneuploidy and tumorigenesis. To further investigate the molecular basis leading to cancer-associated genetic changes, we examined whether the DNA polbeta could affect homologous recombination (HR). Using mammalian cells carrying an intrachromosomal recombination marker we showed that the DNA polbeta overexpression increased the HR mostly by enhancing gene conversion. Concomitantly, we observed the generation of DNA strand breaks as well as a DNA polbeta-dependent formation of Rad51 foci. The stimulation of HR was abolished by the coexpression of a dominant negative form of Rad51, suggesting that the Rad51 was involved in the increased HR events. The expression of different DNA polbeta mutants lacking polymerase activity did not result in HR stimulation, indicating that the DNA synthesis activity of DNA polbeta was related to this phenotype. These results provide new insights into the molecular mechanisms of the genetic instability observed in DNA polbeta overexpressing tumour cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.