Abstract

The activity of DNA polymerases and thymidine kinase was compared in the MC-29 leukosis virus-induced transplantable hepatoma and in the livers of rats treated with cyclophosphamide (CP), cytosine-arabinoside (ara-C) and 5-fluoro-uracil (5-FU). The specific activity of DNA polymerase was twenty times greater in the MC-29 leukosis virus-induced hepatoma, while thymidine kinase was only 3–5 times greater than in the liver. All three enzymes showed Michaelis-Menten kinetics in their substrate and template saturation curves. The template utilization of DNA polymerases from hepatoma and from liver was compared. Both had higher activities on a poly(dA) · poly(dT) template at pH 8.0, than on DNA at pH 7.5. After chromatography on a phosphocellulose column two polymerases were separated. The first peak eluted by 0.15 M KCl preferred DNA as template (polymerase α). The second eluted by 0.5 M KCl worked better on poly(dA) · poly(dT) (polymerase β). Thymidine kinase was eluted by 0.25 M KCl. Inhibition by N-ethylmaleimide (NEM) showed the polymerase α to be sensitive and the polymerase β to be resistant to the sulfhydryl blocking agent; similar to the respective enzymes of other eukaryotic cells. The specific acitivity of DNA polymerase decreased after CP treatment at 6 h and 72 h and after ara-C treatment at 72 h. The specific activities of thymidine kinase were not changed significantly in response to the drug administrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.