Abstract

Intraspecific ploidy variation is an important component of angiosperm biodiversity; however, this variation is rarely considered in conservation programs. This is of particular concern when conservation activities include augmentation, reintroduction or ecological restoration because there are potentially negative consequences when ploidy variants are unintentionally mixed within populations. We surveyed regional ploidy variation in the Lepidosperma costale Nees species complex (Schoeneae: Cyperaceae) in the South West Australian Floristic Region, an international biodiversity hotspot. Several L. costale sensu lato populations are threatened by iron-ore extraction, including the rare L. gibsonii R.L.Barrett, and these populations are the subject of ecological restoration programs. The DNA ploidy of 2384 individuals from 28 populations across the range of the species complex was determined and four DNA ploidy levels were discovered, namely, diploid, triploid, tetraploid and pentaploid. Diploids and tetraploids were the most common cytotypes and were largely geographically segregated, even at an exhaustively studied contact zone. Triploids were found at a low frequency in two populations. The rarity of triploids suggests substantial interploidy sterility, and that mixing of ploidy variants should, therefore, be avoided when restoring L. costale s.l. populations. These data provide a guide for L. costale s.l. germplasm collection and suggest that polyploidy may be an important driver of diversification in these sedges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call