Abstract

Post prostatectomy PSA kinetics and General Grade Groups (GGG) are the strongest prognostic markers of biochemical recurrence (BCR) and prostate cancer (PCa)-specific mortality after radical prostatectomy. Despite having low-risk PCa, some patients will experience BCR, for some, clinically significant BCR. There is a need for an objective prognostic marker at the time of prostatectomy to improve risk stratification within this population. In this study, we investigated the prognostic potential of DNA ploidy. Prostatectomy samples from 97 patients with GGG1 and GGG2 with a low-risk CAPRA-S score were included in this study. PCa tissue with the worst Gleason pattern underwent tissue disaggregation, cell isolation and staining with a DNA stoichiometric stain. Using image cytometry, DNA ploidy was measured and a Ploidy Score (PS) was generated. Among the 97 patients, 79 had no BCR, 18 experienced BCR, of which 14 had a PSA doubling time (PSA-DT) >1 year (low-risk group) and 4 had a PSA-DT of <1 year (high-risk group). Using Logistic regression analysis, only pathological T stage (pT) and PS independently predicted BCR with PS being the most significant (p = 0.001). The number of aneuploid cells was significantly higher in the high-risk group compared to the other groups (p = 1.7x10-11). PS combined with GGG diagnosis further stratified risk groups of biochemical recurrence free survival within CAPRA-S low-risk cohort. DNA ploidy is an independent prognostic marker of BCR in low-risk PCa after radical prostatectomy, which could early on identify potentially aggressive PCa recurrences and introduce a more personalized approach to salvage treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call