Abstract

DNA-dependent protein kinase catalytic subunit (-PKcs) is the core protein involved in the non-homologous end-joining repair of double-strand breaks. In addition, it can form a complex with poly(ADP-ribose) polymerase 1 (PARP1), which catalyzes protein PARylation. However, it is unclear how DNA-PKcs interacts with PARP1 in the DNA damage response and how PARylation affects DNA-PK kinase activity. Using immunoprecipitation, immunofluorescence and flow cytometry the present study found that DNA-PKcs was PARylated after DNA damage, and the PARP1/2 inhibitor olaparib completely abolished DNA-PKcs PARylation. Olaparib treatment prevented DNA-PKcs protein detachment from chromatin after DNA damage and maintained DNA-PK activation, as evidenced by DNA-PKcs Ser2056 phosphorylation. Furthermore, olaparib treatment synergized with DNA-PK inhibition to suppress cell survival. All of the above results are suggestive of the important role of DNA-PKcs PARylation in regulating DNA-PK activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call