Abstract

The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) regulates cell death. We sought to determine whether DNA-PKcs played a role in the tubular damage that occurs during acute kidney injury (AKI) induced by LPS injection (to mimic sepsis), cisplatin administration, or renal ischemia/reperfusion injury. Although DNA-PKcs normally localizes to the nucleus, we detected cytoplasmic DNA-PKcs in mouse kidney tissues and urinary sediments of human patients with septic AKI. Increased cytoplasmic amounts of DNA-PKcs correlated with renal dysfunction. Tubule cell-specific DNA-PKcs deletion attenuated AKI-mediated tubular cell death and changes in the abundance of various proteins with mitochondrial functions or roles in apoptotic pathways. DNA-PKcs interacted with Fis1 and phosphorylated it at Thr34 in its TQ motif, which increased the affinity of Fis1 for Drp1 and induced mitochondrial fragmentation. Knockin mice expressing a nonphosphorylatable T34A mutant exhibited improved renal function and histological features and reduced mitochondrial fragmentation upon induction of AKI. Phosphorylation of Thr34 in Fis1 was detectable in urinary sediments of human patients with septic AKI and correlated with renal dysfunction. Our findings provide insight into the role of cytoplasmic DNA-PKcs and phosphorylated Fis1 in AKI development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.