Abstract
DNA origami have been established as versatile templates to fabricate plasmonic nanostructures in predefined shapes and multiple dimensions. Limited to the size of DNA origami, which are approximate to 100 nm, it is hard to assemble more intricate plasmonic nanostructures in large scale. Herein, we used rectangular DNA origami as the template to anchor two 30-nm gold nanoparticles (AuNPs) which induced dimers nanostructures. Transmission electron microscopy (TEM) images showed the assembly of AuNPs with high yields. Using the linkers to organize the DNA origami templates into nanoribbons, chains of AuNPs were obtained, which was validated by the TEM images. Furthermore, we observed a significant Raman signal enhancement from molecules covalently attached to the AuNP-dimers and AuNP-chains. Our method opens up the prospects of high-ordered plasmonic nanostructures with tailored optical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.