Abstract
The advent of DNA origami technology greatly simplified the design and construction of nanometer-sized DNA objects. The self-assembly of a DNA-origami structure is a straightforward process in which a long single-stranded scaffold (often from the phage M13mp18) is folded into basically any desired shape with the help of a multitude of short helper strands. This approach enables the ready generation of objects with an addressable surface area of a few thousand nm(2) and with a single "pixel" resolution of about 6 nm. The process is rapid, puts low demands on experimental conditions, and delivers target products in high yields. These features make DNA origami the method of choice in structural DNA nanotechnology when two- and three-dimensional objects are desired. This Minireview summarizes recent advances in the design of DNA origami nanostructures, which open the door to numerous exciting applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.