Abstract

Herein, we report a DNA origami plasmonic nanoantenna for the programmable surface-enhanced Raman scattering (SERS) detection of cytokine release syndrome (CRS)-associated cytokines (e.g., tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ)) in cancer immunotherapy. Typically, the nanoantenna was made of self-assembled DNA origami nanotubes (diameter: ∼19 nm; length: ∼90 nm) attached to a silver nanoparticle-modified silicon wafer (AgNP/Si). Each DNA origami nanotube contains one miniature gold nanorod (AuNR) inside (e.g., length: ∼35 nm; width: ∼7 nm). Intriguingly, TNF-α and IFN-γ logically regulate the opening of the nanotubes and the dissociation of the AuNRs from the origami structure upon binding to their corresponding aptamers. On this basis, we constructed a complete set of Boolean logic gates that read cytokine molecules as inputs and return changes in Raman signals as outputs. Significantly, we demonstrated that the presented system enables the quantification of TNF-α and IFN-γ in the serum of tumor-bearing mice receiving different types of immunotherapies (e.g., PD1/PD-L1 complex inhibitors and STING agonists). The sensing results are consistent with those of the ELISA. This strategy fills a gap in the use of DNA origami for the detection of multiple cytokines in real systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.