Abstract

Sunitinib (SUN) is a first-line drug for the treatment of renal clear carcinoma cells by targeting receptor tyrosine kinases (RTK) on the cell membrane. However, the effective delivery of SUN to the cell membrane remains a significant challenge. In this study, we fabricated precisely structured DNA nanotapes with strong surface SUN adhesion, enabling RTK inhibition of renal clear carcinoma cells. In our design, the precisely assembled linear topological six-helical-bundle DNA origami serves as the framework, and positively charged chitosan is adsorbed onto the DNA origami surface, thereby forming DNA nanotapes. The SUN was efficiently loaded onto the surface of the DNA nanotapes by electrostatic interaction. We found that DNA nanotapes exhibit excellent stability in serum. Importantly, DNA nanotapes carrying SUN can achieve prolonged cell membrane retention and inhibit RTK, thereby enhancing cytotoxicity toward 786-0 cells. Taken together, this study provides a promising candidate platform for the efficient delivery of cell membrane receptor inhibitors in anticancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.