Abstract

The results of reciprocal DNA-DNA reassociation kinetics indicated that although the DNAs of human cytomegalovirus (CMV) strains Towne and AD169 shared approximately 90% of their nucleotide sequences, about 10% heterogeneity did exist. The implication was that, with respect to one another, the DNAs of CMV Towne and CMV AD169 contained unique nucleotide sequences. To obtain more direct evidence, 32P-labeled DNA of one virus strain was reassociated in the presence of excess unlabeled DNA of the heterologous virus strain. Those 32P-labeled DNA sequences remaining single stranded were separated from double-stranded DNA on hydroxyapatite columns and incubated with Southern blots containing XbaI restriction enzyme fragments of the homologous virus DNA. This approach not only enriched for nucleotide sequences unique to each strain of virus, but also provided for the identification of the restriction enzyme fragments in which the unique sequences were contained. The CMV Towne unique sequences were found in XbaI fragments A, C, G, L, N, and Q of CMV Towne DNA. The CMV AD169 unique sequences were found in XbaI fragments A, C, G, and J of CMV AD169 DNA. The possible significance of these data with respect to variation among other CMV isolates is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.