Abstract

Recently, various inorganic nanomaterials have been used as fluorescence anisotropy (FA) enhancers for biosensing successfully. However, most of them are size-uncontrollable and possess an intensive fluorescence quenching ability, which will seriously reduce the accuracy and sensitivity of FA method. Herein, we report a two-dimensional DNA nanosheet (DNS) without fluorescence quenching effect as a novel FA amplification platform. In our strategy, fluorophore-labeled probe DNA (pDNA) is linked onto the DNS surface through the hybridization with the handle DNA (hDNA) that extended from the DNS, resulting in the significantly enhanced FA value. After the addition of target, the pDNA was released from the DNS surface due to the high affinity between the hDNA and target, and the FA was decreased. Thus, target could be detected by the significantly decreased FA value. The linear range was 10–50 nM and the limit of detection was 8 nM for the single-stranded DNA detection. This new method is general and has been also successfully applied for the detection of ATP and thrombin sensitively. Our method improved the accuracy of FA assay and has great potential to detect series of biological analytes in complex biosensing systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.