Abstract

Transcription factors (TFs) play a crucial role in gene regulation by binding to specific regulatory sequences. The sequence motifs recognized by a TF can be described in terms of position frequency matrices. Searching for motif matches with a given position frequency matrix is achieved by employing a predefined score cutoff and subsequently counting the number of matches above this cutoff. In this article, we approximate the distribution of the number of motif matches based on a novel dynamic programming approach, which accounts for higher order sequence background (e.g., as is characteristic for CpG islands) and overlapping motif matches on both DNA strands. A comparison with our previously published compound Poisson approximation and a binomial approximation demonstrates that in particular for relaxed score thresholds, the dynamic programming approach yields more accurate results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.