Abstract

Abstract In addition to its role as a carrier of genetic information, DNA has been recognized as a construction material for the assembly of different objects and structural arrangements with nanoscale features. As a result of DNA’s self-recognition properties (based on the specific base-pairing of G-C and T-A), monolayer films of nucleic acids on solid supports have attracted an escalating attentions. Recently, numerous novel materials based on two-dimensional (2D) and three-dimensional (3D) DNA structures have been reported, which extends their utility to a large number of appliations. This review paper intends to be a new and comprehensive overview of recent strategies to site-specifically immobilized DNA on various materials, including carbonaceous substances, gold, and silica substrate, emphasizing the applications of site-specific DNA nanostructure-based devices for diagnostic, bioanalytical, food safety and environmental monitoring. Additionally, an up-to-date perspective is proposed at the end of this review.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.