Abstract

Rationale: Airway macrophages (AMs) are key regulators of the lung environment and are implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a fatal respiratory disease with no cure. However, knowledge about the epigenetics of AMs in IPF is limited. Objectives: To assess the role of epigenetic regulation of AMs during lung fibrosis. Methods: We undertook DNA methylation (DNAm) profiling by using Illumina EPIC (850k) arrays in sorted AMs from healthy donors (n = 14) and donors with IPF (n = 30). Cell-type deconvolution was performed by using reference myeloid-cell DNA methylomes. Measurements and Main Results: Our analysis revealed thatepigenetic heterogeneity was a key characteristic of IPF AMs. DNAm "clock" analysis indicated that epigenetic alterations in IPF AMs were not associated with accelerated aging. In differential DNAm analysis, we identified numerous differentially methylated positions (n = 11) and differentially methylated regions (n = 49) between healthy and IPF AMs, respectively. Differentially methylated positions and differentially methylated regions encompassed genes involved in lipid (LPCAT1 [lysophosphatidylcholine acyltransferase 1]) and glucose (PFKFB3 [6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3]) metabolism, and importantly, the DNAm status was associated with disease severity in IPF. Conclusions: Collectively, our data identify that changes in the epigenome are associated with the development and function of AMs in the IPF lung.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.