Abstract

OSA is a highly prevalent condition that is associated with a wide range of long-term morbidities including metabolic, cardiovascular, and cognitive alterations, possibly via activation of systemic inflammatory and oxidative stress pathways. Implementation of positive airway pressure (PAP) is the first-line treatment for OSA, as well as for obesity hypoventilation syndrome (OHS), its most severe phenotype. However, the molecular and cellular mechanisms underlying OHS-induced morbidities and their response to PAP treatment remain unclear, and could be mediated, in part, by OSA-induced epigenetic changes. Blood was collected before starting PAP treatment (PRE group), as well as 6weeks after PAP treatment (POST group) in 15 adult patients with OHS. DNA methylation profiles were studied by methylated DNA immunoprecipitation coupled to microarrays (MeDIP-chip) in six representative patients and further verified in a cohort of 15 patients by MeDIP-quantitative PCR. We identified 1,847 regions showing significant differential DNA methylation (P<.001; model-based analysis of tiling arrays score, > 4) between the groups. Analysis of biochemical pathways and gene networks demonstrated that differentially methylated regions were associated with immune responses, and particularly with mechanisms governing gene regulation by peroxisome proliferation-activated receptors (PPARs). Single-locus quantitative PCR analysis revealed that DNA methylation was increased at the PPAR-responsive elements (PPAREs) of eight genes in the post-treatment samples (PRE/POST fold changes: ABCA1, 3.11; ABCG1, 1.72; CD36, 5.04; FABP4, 2.49; HMOX, 2.74; NOS2, 7.78; PEPCK, 9.27; and ADIPOQ, 1.73), suggesting that PAP treatment leads to an increase in DNA methylation at PPAREs, possibly affecting the binding of the PPAR-γ complex and downstream gene expression. Our work provides initial evidence of epigenetic regulation particularly involving metabolic pathways in patients with OHS who are responsive to PAP treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call