Abstract

In a significant proportion of children born small for gestational age (SGA) with failure of catch-up growth, the etiology of short stature remains unclear after routine diagnostic workup. We wanted to investigate if extensive analysis of the (epi)genome can unravel the cause of growth failure in a significant portion of these children. Twenty SGA children treated with GH because of short stature were selected from the BELGROW database of the Belgian Society for Pediatric Endocrinology and Diabetology for exome sequencing, single-nucleotide polymorphism (SNP) array and genome-wide methylation analysis to identify the (epi)genetic cause. First-year response to GH was compared with the response of SGA patients in the KIGS database. We identified (likely) pathogenic variants in 4 children (from 3 families) using exome sequencing and found pathogenic copy number variants in 2 probands using SNP array. In a child harboring a NSD1-containing microduplication, we identified a DNA methylation signature that is opposite to the genome-wide DNA methylation signature of Sotos syndrome. Moreover, we observed multilocus imprinting disturbances in 2 children in whom no other genomic alteration could be identified. Five of 6 children with a genetic diagnosis had an "above average" response to GH. The study indicates that a more advanced approach with deep genotyping can unravel unexpected (epi)genomic alterations in SGA children with persistent growth failure. Most SGA children with a genetic diagnosis had a good response to GH treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call