Abstract
Multiple sclerosis (MS) is a chronic autoimmune inflammatory and neurodegenerative disease of the central nervous system, which is characterized by significant clinical heterogeneity. Primary progressive MS (PPMS) develops in 10-15% of patients. Unlike the most common relapsing-remitting form of MS, PPMS involves steady progress of neurodegeneration and, as a consequence, a persistent gradual increase in neurological symptoms. The peculiarities of epigenetic regulation of gene expression may be one of the reasons for the differences in the pathogenesis of the two MS forms. DNA methylation is one of the key epigenetic mechanisms, which remains almost unexplored in different cell populations of PPMS patients. The goal of this work was to identify differential methylation profiles of the CpG sites in the CD14+ monocyte DNA, which characterize PPMS. A genome-wide analysis of DNA methylation in PPMS patients and healthy individuals has identified 169 differentially methylated positions (DMPs), 90.5% of which were hypermethylated in PPMS patients. More than half of all DMPs are located in/near known genes and within CpG islands and their neighboring regions, which indicates their high functional significance. We have found six differentially methylated regions (DMRs) in the OR2L13, CAT, LCLAT1, HOXA5, RNF39, and CRTAC1 genes involved in inflammation and neurodegeneration, which indicates active epigenetic regulation of their expression.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.